Convolutamines A-E, Novel \(\beta\)-Phenylethylamine Alkaloids from Marine Bryozoan Amathia convoluta

Hui-ping ZHANG, Yoshiaki KAMANO,* Haruhisa KIZU,†
Hideji ITOKAWA,†† George R. PETTIT,††† and Cherry L. HERALD†††
Faculty of Science, Kanagawa University, Tsuchiya 2946 Hiratsuka 259-12
†Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, HO-3, Kanazawa 920-11
††Department of Pharmacognosy, Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji 192-03
†††Cancer Research Institute and Department of Chemistry, Arizona State University,
Tempe, Arizona 85287-1604, U.S.A.

Convolutamines A-E, novel cytotoxic alkaloids, have been isolated from Floridian bryozoan *Amathia convoluta* and the structures have been elucidated on the basis of extensive spectroscopic data.

Chemical studies of marine bryozoans have provided a variety of interesting bioactive secondary metabolites including alkaloids from *Amathia wilsoni* ¹⁾ and from *Flustra foliacea* ²⁾ as well as antineoplastic macrolides bryostatins from *Bugula neritina* ³⁾ and from *Amathia convoluta*.⁴⁾ During our search for new biologically active substances from marine organisms, we have examined an extract of the Floridian bryozoan *Amathia convoluta* collected off the Northeasten Gulf of Mexico. The EtOAc-soluble material from the extract was subjected to repeated chromatographies on silica gel, ODS, and Sephadex LH-20 to afford five novel β -phenylethylamine alkaloids convolutamines A (1), B (2), C (3), D (4), and E (5), as colorless oils, in the yields of 5.5x10-4%, 2.5x10-5%, 1.7x10-6%, 1.4x10-5%, and 4.0x10-7%, respectively. We describe herein the structural elucidation of them.

The EIMS spectrum of convolutamine A (1)⁵⁾ showed ions (M-CH₃)⁺ at m/z 442, 444, 446, and 448 in the ratio of 1:3:3:1, suggesting the presence of three bromine atoms. The molecular formula of 1 was determined as C₁₃H₁₈O₂NBr₃ by HREIMS [m/z 456.8929 (M)⁺ for C₁₃H₁₈O₂N⁷⁹Br₃; Δ +4.1mmu], indicating four degrees of unsaturation. The ¹H⁵⁾ and ¹³C (Table 1) NMR spectra in combination with ¹H-¹H COSY, HMQC, HMBC, INADEQUATE experiments showed that 1 consisted of an aromatic ring and an aliphatic chain, as depicted in Fig. 1. The ¹H and ¹³C NMR signals for the aromatic portion (C-6-C-11) in 1 suggested the presence of a 1, 2, 3, 4, 6-pentasubstituted benzene ring, which was verified by the HMBC cross-peaks for H-10/C-6, H-10/C-8, H-10/C-9, and H-10/C-11. This result was further confirmed on the basis of ¹H nondecoupling ¹³C NMR data, which were found to be ³J_{CH} = 7.4 Hz for H-10/C-8 and ²J_{CH} = 4.4 Hz for both H-10/C-9 and H-10/C-11.⁶) Therefore the quaternary aromatic carbons at δ C 121.6s, 115.9s, and 119.7s could be respectively assigned to C-7, C-9, and C-11 to the result that bromine atoms were substitued at C-7, C-9, and C-11. On the other hand, the signal at 119.7 ppm must be located at C-11 position, because the correlations for C-9/C-10 and C-10/C-11 were observed in the INADEQUATE spectrum. The HMBC cross-peak for H-12/C-8 indicated that the methoxyl group was attached to C-8. The partial structure of the aliphatic chain (C-1-C-5) in 1

OCH₃

$$R_1$$
 R_1
 R_1
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5

Fig. 1 The structures of convolutamines A (1), B (2), C (3), D (4), and E (5).

was deduced from the COSY correlations for H-1/H-2, H-2/H-3, and H-4/H-5 as well as the HMBC cross-peaks for H-13/C-3 and H-13/C-4. The tribromomethoxyphenyl unit (C-6-C-11) was shown to be connected to C-5 position by the HMBC cross-peaks for H-4/C-6, H-5/C-6, H-5/C-7, and H-5/C-11. An 1 H NMR signal due to the hydroxyl group on C-2 was observed at $\delta_{\rm H}$ 4.42d in DMSO- $d_{\rm G}$ and disappeared by addition of D₂O. This was also supported by the IR absorption band at 3450 cm⁻¹. These results led to structure 1, 3-[N-methyl-2-(2,4,6-tribromo-3-methoxyphenyl)ethylamino]-2-propanol, for convolutamine A, as shown in Fig. 1.

Table 1. ¹³C NMR Data of Convolutamines A (1), B (2), C (3), D (4), and E (5) in CDCl₃

position	1	2	3	4	5
1	19.9 q	19.6 q	20.4 q	20.0 q	18.9 q
2	63.1 đ	63.0 đ	65.5 đ	71.7 đ	65.3 đ
2 3	64.7 t	64.7 t	56.3 t	59.5 t	59.1 t
4	55.0 t	55.1 t	47.1 t	52.3 t	55.1 t
4 5	34.7 t	34.4 t	37.9 t	37.3 t	34.5 t
6	139.7 s	139.8 s	139.5 s	139.3 s	139.5 s
7	121.6 s	115.1 s	121.8 s	121.8 s	121.8 s
8	154.0 s	155.6 s	154.0 s	154.0 s	154.0 s
9	115.9 s	110.9 d	116.1 s	116.1 s	116.1 s
10	135.4 d	131.8 d	135.4 d	135.4 d	135.4 d
11	119.7 s	110.9 s	119.9 s	119.8 s	119.8 s
12	60.5 q	56.5 q	60.5 q	60.5 q	60.5 q
13	41.9 q	41.9 q	•	86.3 t	61.5 t
14	•	•			93.8 s
15					25.2 q

 δ in ppm.

The spectral data of convolutamine B (2)⁷⁾ were similar to those of 1. The EIMS spectrum revealed that 2 possessed one less bromine atom than 1, since the molecular ions at m/z 379, 381, 383 showed a triplet in a ratio of 1:2:1, which suggested the presence of two bromine atoms. The molecular formula, $C_{13}H_{19}O_2NBr_2$, was deduced by HREIMS [m/z 378.9784, (M)⁺ for $C_{13}H_{19}O_2N^{79}Br_2$, Δ +0.1mmu]. The ¹H NMR spectrum of 2 closely resembled that of 1 except the signals at δ_H 6.65d and δ_H 7.45d. The ¹³C NMR spectral data (Table 1) of 2 were different from those of 1 only in the signals due to C-7, C-9, C-10, and C-11. Analysis of 2D NMR

spectral data revealed that 2 possessed the structure as follows. The ${}^{1}H^{-1}H$ coupling constant (J = 8.8 Hz) due to δ_{H} 6.65d and 7.45d implied that H-9 connected to ortho position of H-10, which was further confirmed by the COSY correlation between H-9 and H-10. Also, the position of H-9 was established by the NOESY correlation between H-9 and H₃-12 as well as the HMBC cross peaks for H-9/C-7, H-9/C-8 and H-9/C-11. The ${}^{1}H$ NMR spectral data of 2 in DMSO- d_{6} also revealed the presence of an exchangeable proton due to OH-2 by addition of D₂O. Thus, the structure of convolutamine B was determined to be structure 2, 3-[N-methyl-2-(2,6-dibromo-3-methoxyphenyl)ethylamino]-2-propanol.

Convolutamine C (3)⁸⁾ was isolated from a more polar portion than any of two compounds described above. The 1 H (6 H 2.43 s) and 13 C (6 C 41.9 q) NMR signals (Table 1) due to N-methyl group which observed in both 1 and 2 were absent in 3. By the analyses of NMR spectral data, the structure of convolutamine C (3) was assigned to be structure 3, 3-[2-(2,4,6-tribromo-3-methoxyphenyl)ethylamino]-2-propanol, as shown in Fig. 1.

In the 1 H and 13 C NMR spectra of convolutamine D (4), the signals at $\delta_{\rm H}$ 4.41d and 4.44d (H-13)⁹⁾ as well as the signal at $\delta_{\rm C}$ 86.3t (C-13) (Table 1) were observed to be different from those of 1 and 2. The HMBC cross peaks for H-13/C-4 and H-13/C-3 as well as the COSY correlation H-1-H-3 suggested the presence of an oxazolidine ring. The 13 C chemical shift (δ 86.3 t) for the methylene signal due to C-13 agreed well with that a oxazolidine system. 10 The EIMS spectrum showed the molecular ions (M+) at m/z 454, 456, 458, 460 in a ratio of 1:3:3:1, suggesting the presence of three bromine atoms as 1. Interpretation of the spectral data such as 1 H- 1 H COSY, HMQC, HMBC led to the establishment of the structure of 4 as shown in Fig.1, assigned as 3-[2-(2,4,6-tribromo-3-methoxyphenyl)ethyl]-5-methyloxazolidine. To our knowledge, compounds with oxazolidine are rare in nature.

The EIMS spectrum for convolutamine E (5)¹¹⁾ showed ions (M-H₂O)⁺ at m/z 481, 483, 485, 487 in a ratio of 1:3:3:1, suggesting the presence of three bromine atoms. The molecular formula, $C_{15}H_{20}O_3NBr_3$, was estabilished by the HREIMS[(M)⁺, m/z 498.8994, for $C_{15}H_{20}O_3N^{79}Br_3$]. With the aid of NMR techniques such as ¹H NMR, ¹³C NMR (Table 1), HOMO decoupling and NOE difference spectral experiments, the structure of 5 was assigned as 4-[2-(2,4,6-tribromo-3-methoxyphenyl)ethyl]-2-hydroxy-2,6-dimethylmorpholine, as shown in Fig. 1.

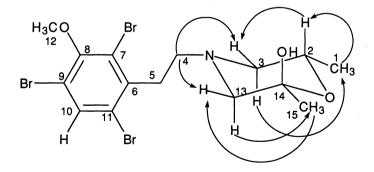


Fig. 2 NOEs of convolutamine E (5) in pyridine-d5.

The relative stereochemistry of convolutamine E (5) was illustrated in Fig. 2. Both convolutamines A(1) and B (2) were found to be a racemates, because the ¹H NMR spectra of their 2-O-(S)- or (R)-MTPA

derivatives showed the signals due to both (2S)-and (2R)-form in a ratio of $1:1.^{12}$) The stereochemistry of convolutamines C and D remains unknown.

From other bryozoan *Amathia wilsoni*, a β -phenylethylamine has been isolated as a possible precursor of the brominated β -phenylethylamines, amathiamides, having the *N*-methylpyrrolidine groups.¹⁾ This fact indicated that the biogenesis of convolutamines A-E (1-5) from *Amathia convoluta* is related to that of Amathiamides.

Convolutamines A (1), B (2), and D (4) exhibited cell growth inhibitory activity (IC₅₀ 10.6, 4.8, and 8.6 µg/ml, respectively) against the murine P388 lymphocytic leukemia.

References

- 1) A. J. Blackman and Shan-Liu Fu, J. Nat. Prod., 52, 436 (1989).
- 2) J. S. Carlé and C. Christophersen, J. Org. Chem., 46, 3440 (1981).
- 3) G. R. Pettit, Progress in the Chemistry of Organic Natural Products, 57, 153 (1991).
- 4) G. R. Pettit, Y. Kamano, R. Aoyagi, C. L. Herald, D. L. Doubek, J. M. Schmidt, and J. J. Rudloe, *Tetrahedron*, 41, 985 (1985).
- 5) 1: IR (CHCl₃) v_{max} 3450, 1460, 1420, 1350, 1275, 1050, 936 cm⁻¹. UV (MeOH) λ_{max} 212.5 nm (ϵ 27, 900). ¹H NMR (400 MHz, CDCl₃) δ 1.15 (3H, d, J = 5.9 Hz, H-1), 2.34 (1H, dd, J = 12.1, 10.3 Hz, H-3a), 2.44 (1H, dd, J = 12.1, 2.9 Hz, H-3b), 2.44 (3H, s, H-13), 2.59 (1H, ddd, J = 12.5, 11.0, 5.5 Hz, H-4a), 2.71 (1H, ddd, J = 12.5, 11.0, 5.5 Hz, H-4b), 3.13 (1H, ddd, J = 12.5, 11.0, 5.5 Hz, H-5a), 3.21 (1H, ddd, J = 12.5, 11.0, 5.5 Hz, H-5b), 3.81 (1H, dqd, J = 10.3, 5.9, 2.9 Hz, H-2), 3.86 (3H, s, H-12), 7.74 (1H, s, H-10).
- 6) The C-H long range coupling constants of aromatic carbons: ${}^3J_{\rm CH} > {}^2J_{\rm CH}$, e.g. ${}^3J_{\rm CH} = 7.4$ Hz and ${}^2J_{\rm CH} = 1.0$ Hz (benzene ring). R. M. Silverstein, G. C. Bassler, and T. C. Morrill, "Spectrometic Identification of Organic Compounds", Fourth Edition (1981), p. 272.
- 7) 2: IR (CHCl₃) v_{max} 3420, 2970, 2910, 1570, 1460, 1420, 1070, 936 cm⁻¹. UV (MeOH) λ_{max} 211.5 nm (ϵ 20,100), EIMS m/z 89 (C₄H₁₀ON+H)⁺, 103 (C₅H₁₂ON+H)⁺, 275, 277, 279 [1:2:1, (C₈H₇OBr₂-2H)⁺], 290, 292, 294 [1:2:1, (C₉H₉OBr₂-H)⁺], 334, 336, 338 (1:2:1, C₁₁H₁₄ONBr₂⁺). ¹H NMR (400 MHz, CDCl₃) δ 1.13 (3H, d, J = 6.3 Hz, H-1), 2.35 (1H, dd, J = 12.2, 10.7 Hz, H-3a), 2.43 (3H, s, H-13), 2.44 (1H, dd, J = 12.2, 2.9 Hz, H-3b), 2.59 (1H, ddd, J = 12.7, 11.2, 5.4 Hz, H-4a), 2.72 (1H, ddd, H-4b), 3.16 (1H, ddd, J = 12.7, 11.2, 5.4 Hz, H-5a), 3.25 (1H, ddd, J = 12.7, 11.2, 5.4 Hz, H-5b), 3.79 (1H, dqd, J = 10.3, 6.3, 2.9 Hz, H-2), 3.86 (3H, s, H-12), 6.65 (1H, d, J = 8.8 Hz, H-9), 7.45 (1H, d, J = 8.8 Hz, H-10).
- 8) 3: 1 H NMR (400 MHz, CDCl₃) δ 1.17 (3H, d, J = 6.3 Hz, H-1), 2.49 (1H, dd, J = 12.1, 9.2 Hz, H-3a), 2.82 (1H, dd, J = 12.2, 2.9 Hz, H-3b), 2.83 (1H, dt, J = 11.7, 8.0 Hz, H-4a), 2.88 (1H, dt, J = 11.7, 8.0 Hz, H-4b), 3.19 (2H, t, H-5), 3.80 (1H, dqd, J = 9.2, 6.2, 2.9 Hz, H-2), 3.86 (3H, s, H-12), 7.74 (1H, s, H-10).
- 9) **4**: 1 H NMR (400 MHz, CDCl₃) δ 1.28 (3H, d, J = 6.4 Hz, H-1), 2.55 (1H, dd, J = 10.8, 7.8 Hz, H-3a), 3.24 (1H, dd, J = 10.8, 6.4 Hz, H-3b), 2.73 (2H, m, H-4), 3.19 (2H, m, H-5), 3.86 (3H, s, H-12), 4.15 (1H, dqt, J = 7.8, 6.4 Hz, H-2), 4.41 (1H, d, J = 4.9 Hz, H-13a), 4.44 (1H, d, J = 4.9 Hz, H-13b), 7.74 (1H, s, H-10).
- 10) N. Murugesan, G. Blasko, R.D. Minard, and M. Shamma, Tetrahedron Lett., 22, 3131 (1981).
- 11) 5: 1 H NMR (400 MHz, CDCl₃), δ 1.28 (3H, d, J = 6.2 Hz, H-1), 1.40 (3H, s, H-15), 1.96 (1H, t, J = 11.0 Hz, H-3a), 2.23 (1H, d, J = 11.0 Hz, H-13a), 2.58 (2H, t, J = 8.0 Hz, H-4), 2.79 (1H, dd, J = 11.0, 2.5 Hz, 13b), 2.87 (1H, dt, J = 11.0, 2.5 Hz, H-3b), 3.17 (2H, m, H-5), 3.87 (3H, s, H-12), 4.07 (1H, dqd, 11.0, 6.2, 2.5 Hz, H-2), 4.39 (1H, br s, OH-2), 7.74 (1H, s, H-10).
- 12) I. Ohtani, T. Kusumi, Y. Kashman, and H. Kakisawa, J. Am. Chem. Soc., 113, 4092 (1992).

(Received August 29, 1994)